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or flow independent, such as distance. For urban commuters who 
need to arrive at their working place in a certain amount of time, 
their route choices are subject to a flow-dependent time constraint, 
whereas for electric vehicle drivers, their route choices are limited 
to those paths along which the length is less than the driving range 
limit confined by the battery capacity.

The focus of this paper is on the distance-constrained TAP 
(DCTAP), in which distance is used as the proxy of a class of 
flow-independent path attributes. The distance-constrained traf-
fic equilibrium is defined as an extension of the Wardropian user 
equilibrium principle: each traveler seeks a route to minimize his 
or her own travel cost subject to maximum path length; no traveler 
can reduce his or her travel cost by unilaterally changing routes 
from the distance-restrained route set.

Problem Motivation and Statement

Plug-in electric vehicles (PEVs) rely primarily or exclusively on 
electricity and are designed to be recharged by the electricity grid. 
Those PEVs that rely entirely on electricity (e.g., the 2011 Nissan 
Leaf and the 2012 Mitsubishi i) are defined as battery electric vehicles 
(BEVs). Because the electricity consumption is typically proportional 
to the driving distance, the battery capacity confines a driving range 
for BEVs. For example, the driving range of a Mitsubishi i vehicle 
is about 60 mi, and a Nissan Leaf vehicle can run up to 100 mi on 
a single charge. Once a BEV’s battery storage is depleted, it cannot 
be driven any farther. This distance limit inevitably changes BEV 
drivers’ travel behaviors. Given the scarce availability of charging 
stations in the current market, consumers perceive this driving range 
limit to be a potential worry, or it may cause, as it is called by some 
researchers, “range anxiety”: the fear of being stranded because the 
battery runs out of charge (3).

The massive adoption of PEVs requires fundamental changes 
to the existing travel demand and network flow models to capture 
changing or induced behaviors and constraints properly, especially 
in urban areas where BEVs may dominate the passenger car popu-
lation in the future. On the basis of the current battery technology, 
charging of a BEV battery can take several to more than 10 hours. 
More advanced battery-charging technology is still under develop-
ment, and the distribution of the existing charging infrastructure is 
far below the level required to provide a minimum coverage. For 
example, among all the states in the United States, California is the 
only state that now has more than 50 charging stations (4). Although 
many cities are planning the construction and expansion of public 
charging infrastructures, it is currently likely that most BEV drivers 
will need to charge their vehicles at home (5).

This paper considers the proposed DCTAP as a pure mathemati-
cal tool and a fundamental modeling device that can be used to 
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This paper presents a mathematical programming model and solution 
method for the path-constrained traffic assignment problem, in which 
route choices simultaneously follow the Wardropian equilibrium prin-
ciple and yield the distance constraint imposed on the path. This prob-
lem is motivated by the need for modeling distance-restrained electric 
vehicles in congested networks, but the resulting model and solution 
method can be applied to various conditions with similar path-based 
constraints. The equilibrium conditions of the problem reveal that any 
path cost in the network is the sum of corresponding link costs and a 
path-specific out-of-range penalty term. The suggested method, based on 
the classic Frank–Wolfe algorithm, incorporates an efficient constrained 
shortest-path algorithm as its subroutine. This algorithm fully exploits 
the underlying network structure of the problem and is relatively easy to 
implement. Numerical results from the examples of problems provided 
show how the equilibrium conditions are reshaped by the path constraint 
and how the traffic flow patterns are affected by different constraint 
tightness levels.

Since the seminal work of Beckmann et al. (1), various traffic assign-
ment problems (TAPs) have been proposed and formulated for char-
acterization and prediction of traffic flow patterns on road networks 
on which congestion effects become a prominent phenomenon as 
a result of the flow–cost interaction. Traffic flow patterns are often 
determined according to the tendency of a traffic network to move 
toward a stable state or a prescribed performance criterion. The 
two most commonly used network assignment principles, namely, 
user equilibrium and system optimum, are generally attributed to 
Wardrop (2).

The Wardropian user equilibrium principle is based on the indi-
vidual self-optimal assumption; that is, each traveler seeks a route to 
minimize his or her own travel cost, and a stable condition is reached 
when no traveler can reduce his or her travel cost by unilaterally 
changing routes. This paper describes a study of a special TAP of the 
user equilibrium type with extra constraints: the path-constrained 
TAP. In its simplest form, two types of constraints may be imposed 
on paths, namely, path flow constraint and path cost constraint. A 
path cost could be flow dependent, such as travel time and reliability, 
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characterize and mimic aggregate BEVs’ travel behavior in net-
works with a given set of ideal socioeconomic assumptions and 
restrictions. The authors, however, do not claim the applicabil-
ity and suitability of the defined problem and model for accurate 
quantification of network flows and congestion levels. One must 
consider individual travelers or traffic flows with alternative travel 
behavior flexibilities and restrictions because of the various vehicle 
technologies and fueling infrastructures. A more general situation 
is that vehicles of other technological types, such as conventional 
gasoline vehicles and emerging hybrid vehicles, prevail in the net-
work; a practical operational model must accommodate mixed flows 
of these different types of vehicles. Despite these realistic situa-
tions, however, the authors believe that the simple model and solu-
tion method presented in this paper provide a theoretical basis and 
behavioral insights for construction of more complex models with 
realistic considerations.

Relevant Models

To the best of the authors’ knowledge, no research about the DCTAP 
has been done before. The DCTAP can be simply described as the 
classic TAP with a side constraint for each path in the network. 
Research efforts on extension of the basic TAP by addition of side 
constraints can be found in the literature. A typical example is the 
capacity-constrained TAP, which imposes upper bounds on link flows 
(6–8). Larsson and Patriksson extended the capacity-constrained TAP 
to a general side-constrained TAP, but they assumed that the general 
side constraints involve only the link flows (9).

Another related research stream is the bicriteria TAP. Dial (10–12) 
and Leurent (13) developed bicriteria TAP models in which both 
routing criteria are flow dependent. A bicriteria or multicriteria TAP 
model enables one to represent disaggregate trade-offs between dif-
ferent criteria in the trip-makers’ route choices, for example, travel 
time and monetary cost. However, the distance limit considered in 
this work is a hard constraint, which requires that it be treated as a 
constraint rather than an objective criterion.

Relevant Algorithms

It is well recognized that the standard TAP can be solved efficiently 
with a solution algorithm of linear approximation like the Frank–
Wolfe method (14). It is popular because of its relative simple 
algorithmic structure, ease of implementation, and availability in 
commercial software packages. This method is especially efficient 
for determination of the network equilibrium flows because the 
linearized subproblem calls for minimization of the total travel 
cost over a network with fixed link travel costs, which actually 
collapses to a shortest-path problem for each origin–destination 
(O-D) pair. The shortest-path problem can be solved efficiently by 
polynomial algorithms such as the algorithm of Dijkstra (15) or 
Floyd–Warshall (16, 17).

In the case of a TAP with link-level side constraints, the efficiency 
of a Frank–Wolfe-type algorithm may be seriously degraded when 
the linearized subproblem is not separable for each O-D pair. In 
the special case of capacity-constrained TAP, for example, the sub-
problem becomes a multicommodity minimum-cost flow problem, 
which is quite expensive to solve repeatedly. When the side con-
straints involve only link flows, however, the side constraints can be 
relaxed through dual or penalty schemes and the relaxed problem is 

merely a basic TAP with generalized link travel costs. Any efficient 
algorithm for solving the basic TAP can be used to solve this relaxed 
problem. For this reason, the dual or penalty scheme is a popular 
approach for solving this type of problem.

However, when the side constraints involve path flows, like what 
the authors studied in this work, the equilibrium conditions of the 
relaxed problem are based on the path impedance, which is the sum 
of path travel cost and a path-specific cost term (see the discussion 
below). In other words, if the DCTAP is relaxed into a sequence 
of unconstrained problems through a dual or penalty scheme, the 
relaxed subproblems are TAPs with path-specific costs that are much 
more difficult to solve than the basic TAP. Gabriel and Bernstein 
studied the TAP with nonadditive path costs and proposed a general 
functional form of nonadditive path costs that includes the case of 
path-specific costs (18). A generic algorithm based on sequential 
quadratic programming was proposed to solve it, but no numerical 
test result was given. Lo and Chen used a smooth gap function to 
convert the nonlinear complementarity problem formulation for the 
TAP with nonadditive costs to an equivalent unconstrained optimi-
zation problem and proposed two solution approaches to solve it 
(19). Their first approach involves enumeration of a predefined set 
of routes in advance, and the second one resorts to solution of the 
kth shortest-path problem repeatedly. Neither of these two methods, 
however, is applicable for large networks. In the case described here, 
the path-specific cost term involves the dual variable or Lagrangian 
multiplier associated with the side constraint, which is not explicitly 
known. The values of Lagrangian multipliers must be iteratively 
derived, and a TAP with path-specific costs must be solved. This 
solution strategy does not seem to be efficient, given that such a TAP 
with path-specific costs itself is not readily tackled.

Another difference between the link-level constrained problem 
and the path-level constrained problem is that in the linearization 
scheme, as in the Frank–Wolfe algorithm, the linearized subprob-
lem of the path side-constrained problem can still be solved sepa-
rately for each O-D pair. The authors will actually prove here that 
the linearized subproblem for DCTAP is a constrained shortest-path 
problem (CSPP), that, however, is NP-complete in its worst case 
(20) and can be solved relatively efficiently in practice. Therefore, 
instead of the dual strategy, the linearization strategy, specifically, 
the Frank–Wolfe framework, is applied to solve the DCTAP.

CSPP can be stated as follows: given a directed network that has a 
cost and a resource associated with each link, find the least-cost path 
between two specified nodes such that the total resource consumed 
by this path is less than a prespecified limit. The exact algorithms 
for the solution of CSPP that have been developed can be divided 
into two main categories: one involves solution of a relaxed prob-
lem by Lagrangian or linear relaxation (21–24), and the other uses 
labeling methods based on dynamic programming (25–27). Among 
these methods, the label-setting algorithm developed by Desrochers 
and Soumis (26) appears to have been widely regarded as an effi-
cient one. A recent improvement on the algorithm implementation 
was made by Dumitrescu and Boland (27), who modified the label-
setting algorithm of Desrochers and Soumis (26) and combined it 
with a preprocessing procedure. They found that although it had the 
same worst-case complexity, the modified label-setting algorithm 
together with the preprocessing procedure performs markedly bet-
ter than the original label-setting algorithm in numerical tests, with 
test problems with thousands of nodes being solved in seconds. For 
details about the labeling algorithm and preprocessing procedure, 
interested readers are referred to the report and references therein 
of Dumitrescu and Boland (27).



Jiang, Xie, and Waller� 27

Outline

The remainder of this paper is organized as follows. The DCTAP 
model is first elaborated; in particular, the model formulation and 
solution properties are discussed. Next, the authors show that this 
problem can be solved by the Frank–Wolfe algorithm with an imple-
mentation of the CSPP as a subroutine. Computational results for a 
couple of test problems of small and medium sizes are given. The 
results from these numerical tests justify the applicability of the 
model and solution method. The means by which network flow pat-
terns are affected by different distance limits are also demonstrated by 
use of the model and method as a tool. Finally, directions for future 
exploration are discussed.

Model Formulation and Properties

Model Formulation

As noted above, the classic TAP can be described by an equivalent 
mathematical program that is known as Beckmann’s transforma-
tion. By use of this basic formulation and incorporation of different 
distance constraints for different makes and classes of vehicles, the 
following DCTAP is proposed:
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where

	 xa	=	 traffic flow rate on link a,
	ta (?)	=	 travel cost of link a,
	 f rs

k,m	=	� traffic flow rate of mth class of vehicles on path k from 
origin r to destination s,

	 qm
rs	=	� travel demand rate of mth class of vehicles from origin r 

to destination s,
	 Dm	=	distance limit of mth class of vehicles, and
	 lk

rs	=	� the length of path k from origin r to destination s, Σa da δrs
a,k, 

where da is distance of link a and δrs
a,k is link–path incidence 

parameter; δrs
a,k is equal to 1 if link a is contained in kth path 

from origin r to destination s; otherwise, δrs
a,k is equal to 0.

In this model, Objective Function 1 and Constraints 2 and 3 con-
stitute the basic TAP model. Inequality 4 is the added side constraint 
that has a direct physical interpretation: if the flow rate of the mth 
class of vehicles on path k connecting origin r and destination s is 
positive, the length of this path cannot exceed Dm, the distance limit 
of the mth class of vehicles. For gasoline vehicles, the distance limit 
is infinity. Therefore, this model takes into account both BEVs and 
gasoline vehicles.

Optimality Conditions

To check the equilibrium conditions corresponding to the point at 
which the mathematical program described above is minimized, 
the first-order conditions of the program are analyzed. Let um

rs and 
λrs

k,m denote the dual variables associated with Equations 2 and 4, 
respectively. If um

rs is unrestricted in sign, and λrs
k,m is restricted to be 

nonnegative, the Lagrangian problem can be written as
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The optimality conditions of the Lagrangian problem are
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Constraints 10, 12, and 14 are simply the flow nonnegativity, 
distance, and flow conservation constraints of the original prob-
lem formulation, respectively. These constraints will hold at the 
minimum point of the objective function. Define
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where ck
rs is the path travel cost, which is the sum of the costs of 

those links along the path, and prs
k,m can be interpreted to be a com-

posite path cost for the mth class of vehicles. It is the sum of two 
components: the path travel cost and λrs*

k,m  (lk
rs − Dm), which is the 

path out-of-range cost incurred when the path length exceeds the 
distance limit of the mth class of vehicles. From this definition of 
prs

k,m, one can see that the Lagrangian multiplier λrs
k,m stands for the 

value of distance for the mth type of vehicles, that is, an equivalent 
travel cost value of the unit travel distance. If a path’s total length 
exceeds a certain type of vehicle’s distance limit, the out-of-range 
cost is set positive so that the composite cost is greater than or equal 
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to the minimum-path cost and the chance that this path will be chosen 
decreases to 0 (i.e., Equations 8 to 10).

Constraints 11 to 13 make sure that any path’s composite cost 
is at least equal to its travel cost. Specifically, when (Dm − lk

rs) f rs
k,m  

> 0, that is, the kth path connecting O-D pair r–s is used by the mth 
class of vehicles and its length is less than the distance limit of the 
mth class of vehicles, λrs

k,m must equal 0 for Equation 11 to hold. In 
this case, the composite path cost is equal to the path travel cost; 
otherwise, λrs

k,m > 0 and additional cost is incurred.
Substitution of Equation 16 into Equations 8 and 9 provides
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These two conditions state the user equilibrium principle under the 
distance constraint and hold for each path between any O-D pair 
in the network. For a given path, say, path k connecting r and s, 
the conditions hold for two possible combinations of path flow and 
path cost. Either the flow of the mth class of vehicles on that path is 
0 (that is, f rs

k,m is equal to 0 and Equation 17 holds; in this case, the 
composite travel cost for the mth class of vehicles on that path, prs

k,m, 
must be greater than or equal to um

rs, as required by Equation 18) or 
the flow of the mth class of vehicles on that path is positive, in which 
case prs

k,m is equal to um
rs and both Equation 17 and Equation 18 hold. 

In any case, the value of um
rs is less than or equal to the composite 

travel cost of the mth class of vehicles on all paths connecting r 
and s; that is, um

rs is the minimum composite travel cost of the mth 
class of vehicles traveling from r to s.

It is readily proved that Objective Function 1 is convex and that 
the feasible region defined by Constraints 2 to 4 is convex (28). 
Therefore, this DCTAP model has a unique solution.

Problem Feasibility

The extra distance constraint in the model introduced above could 
be infeasible. For some O-D pairs, if none of those paths connect-
ing them satisfies the distance limit of a certain class of vehicles, 
the travel demand between them for this class of vehicles cannot 
be assigned to the network and the problem has no feasible solu-
tion. Those infeasible O-D pairs, however, can be easily detected. 
For example, for each O-D pair, the distance of the shortest path 
is checked, and if the shortest path is longer than a certain class of 
vehicles’ distance limit, then no feasible path for the DCTAP exists 
between this O-D pair for this class of vehicles.

Solution Approach

It was shown that the Frank–Wolfe algorithm can still be applied 
to the DCTAP, given the problem’s convex structure, but with a 
direction-finding step different from that of the classic TAP. To find 
a descent direction to the optimization problem in Equations 1 to 4, 
the Frank–Wolfe algorithm searches the entire feasible region for 
an auxiliary feasible solution, yn, such that the direction from xn 
(the current solution at the nth iteration) to yn provides a maximum 
drop in the objective function value (28). This direction can be 
constructed by solution of the following linearization problem:
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where grs
k,m is the auxiliary flow rate of the mth class of vehicles on 

path k connecting O-D pair r–s and ya is equal to Σrs Σk Σm grs
k,m δrs

a,k, 
∀a, and is the auxiliary link flow rate. Given that xn

a is the current 
link flow rate obtained from the last iteration, link travel cost ta(xn

a) 
is constant here. The objective of the program described above is to 
minimize the total travel cost over a network with fixed link travel 
costs. The total travel cost spent in the network will be minimized 
by assignment of all vehicles to the least-cost paths connecting their 
origins and destinations, whose lengths also satisfy the distance 
limit. This problem is actually the CSPP described above.

To see that the program described above involves nothing more 
than a CSPP, the direction-finding step of the Frank–Wolfe method 
can be derived with the gradient of Objective Function 1 for path 
flows. The program then becomes
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where ck
rs,n is the travel cost on path k connecting O-D pair r and s 

at the nth iteration of the algorithm. This program can be decom-
posed by O-D pair and vehicle class since path travel costs and 
path lengths are fixed. The resulting subproblem for the mth class of 
vehicles and O-D pair r–s is minimized by determination of path h, 
which has the lowest travel cost among all paths connecting origin r 
and destination s that satisfy the distance constraint of the mth class 
of vehicles, and then assignment of all the demand for the mth class 
of vehicles to this path. In other words, grs

h,m is equal to qm
rs if lh

rs is  
≤ Dm and ch

rs is ≤ ck
rs for all k satisfying lk

rs ≤ Dm, and grs
k,m is equal to 

0 for all other paths.
Once the path flow pattern grs,n

k,m  is found, the auxiliary link flow 
pattern can be calculated; that is, yn

a is equal to Σrs Σk Σm grs,n
k,m δrs

a,k, 
∀a. The descent direction (dn) can then be obtained as yn − xn. Once 
the descent direction is determined, any line search method can be 
applied to obtain the move size so that the maximum drop of the 
objective function value is achieved.

Here it has thus been proved that the DCTAP can be solved by 
use of the Frank–Wolfe procedure and that the direction-finding step 
of this procedure is equivalent to solution of the CSPP. The specific 
steps of this approach can be summarized as follows:
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Step 0.  Feasibility check. For an O-D pair, find the shortest path 
according to distance. If the length of this path is longer than the 
range limit of a certain class of vehicle and the demand of this class of 
vehicle between this O-D pair is positive, then no feasible path exists  
for this class of vehicle between this O-D pair. Add this O-D pair 
and corresponding infeasible vehicle classes to Set G. After that is 
done, check for a feasible path for each O-D pair. If Set G is empty, 
continue to the next step; otherwise, stop and report Set G.

Step 1.  Initialization. For each O-D pair, find the distance-
constrained least-cost path for each class of vehicles on the basis 
of the free-flow travel cost ta = ta(0), ∀a. Assign all the demand 
of each class of vehicles between this O-D pair to the corresponding 
constrained shortest path. This yields {x1

a}. Set counter n := 1.
Step 2.  Update. Calculate a new link cost according to tn

a = 
ta(xn

a), ∀a.
Step 3.  Direction finding. For each O-D pair and vehicle class, 

find the distance-constrained least-cost path on the basis of new link 
travel cost tn

a. Assign the demand of each class of vehicles between 
this O-D pair to corresponding paths. This yields auxiliary flow {yn

a}.
Step 4.  Line search. Apply any of the interval reduction line 

search methods, such as the bisection method (which is particularly 
applicable here), the golden section method, or other applicable 
method, to find the optimal value of θ—the optimal move size—by 
determination of the solution to

min
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a
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Step 5.  Move. Set xa
n+1 equal to xn

a + θ(yn
a − xn

a), ∀a.
Step 6.  Convergence test. If the preset convergence criterion is 

not met, set n := n + 1 and go to Step 1; otherwise, stop and {xa
n+1} 

is the set of equilibrium link flows.

It is readily known that the most computation-intensive step 
in each iteration of this algorithm is the search for the distance-
constrained shortest paths in the direction-finding step. Therefore, 
an efficient method for detection of the constrained shortest path 
is utmost to the efficiency of the whole algorithmic procedure. 
As stated above, the modified label-setting algorithm with a pre-
processing phase developed by Dumitrescu and Boland performs 
well in historical numerical tests (27). Therefore, this method was 
used to solve the distance-constrained shortest-path problem in the 
numerical examples.

Numerical Examples

The purpose of this numerical analysis is threefold: (a) to jus-
tify the validity of the model and algorithm, (b) to examine the 
impact of the distance constraint on network flow patterns, and 
(c) to evaluate the change of computational costs caused by the 
distance constraint.

The solution procedure is first applied to a simple network with 
eight nodes and 10 links, as shown in Figure 1a. The number beside 
each link is the link length. Nodes 1 and 2 are origins, and Nodes 3 
and 4 are destinations. In this small example, the focus is on analysis 
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FIGURE 1    Test networks: (a) a small network and (b) Sioux Falls network.
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of how different distance limits affect the routing behavior of vehi-
cles; for simplicity, only a single class of vehicles is considered. The 
travel demand between each O-D pair (O-D Pairs 1–3, 1–4, 2–3, 
and 2–4) for this class of vehicles is 10 flow units. Link costs and 
distances of the connectors (i.e., those links connecting origins or 
destinations with internal nodes) are assumed to be 0, and all other 
links have the same cost function, namely, ta = 1 + x2

a.
The solution procedure described above was run with different 

values of the distance constraint, and the results are summarized in 
Table 1. The connectors are not listed in Table 1, since their flow 
rates will always be 20.

This toy network has, at most, two paths between each O-D pair. 
Their lengths and costs at equilibrium under different distance limits 
are shown in Table 2.

Notice from Table 1 that the equilibrium flow patterns under the 
first three conditions (i.e., no distance limit (D), D equal to 27, and 
D equal to 25) are the same. The same equilibrium flow patterns can 
be explained by Table 2, which shows that when no distance limit 
exists, the second path between O-D Pair 1–3 (1–5–7–8–6–3) and 
the second path between O-D Pair 2–4 (2–7–5–6–8–4) are not used 
because their costs are higher than the minimum cost between cor-
responding O-D pairs. When D is equal to 27, the only path violating 
the distance limit is the one not used even when no distance limit 
exists, and a similar situation exists when D is equal to 25. There-
fore, the first three conditions have the same flow pattern because 
the distance constraints in the last two conditions are actually not 

binding. When D is equal to 24, only O-D Pair 1–4 has two available 
paths, and both of them carry flows. Because of this tighter limit, 
the second path between O-D Pair 2–3 (2–7–8–6–3) is no longer 
feasible. Traffic flows switch from this path to the first path, which 
causes the cost of those paths through Link 5–6 to increase (e.g., the 
cost of Path 1–5–6–3 increases from 401 to 442), whereas the cost 
of those through Link 7–8 decreases (e.g., the cost of Path 2–7–8–4 
decreases from 401 to 362). As the limit becomes tighter, the number 
of paths used decreases. When D is equal to 23, only one path can be 
used for each O-D pair. As a result, some links, such as Link 6–8 and 
Link 8–6, will not be used at all.

The last column of Table 1 shows that the total network travel 
cost increases as the distance limit gets lower. This is not surprising 
because when the distance constraint is set to be tighter, the number 
of feasible paths in the network typically decreases and those remain-
ing feasible paths become more congested. However, this situation is 
not always the case; when a phenomenon similar to Braess’s paradox 
arises in the distance-constrained traffic network, the total network 
travel cost may decrease with a tighter constraint. This phenomenon 
will be discussed in a subsequent paper.

The algorithm was then applied to a larger benchmark network, 
the Sioux Falls, South Dakota, network, as shown in Figure 1b. The 
link performance functions and travel demand table used in the 
application are directly from previous work (29). For simplicity, 
the free-flow travel time is used as a proxy for the link length for 
each link.

TABLE 1    Link Flow Pattern Under Different Constraint Conditions

Distance 
Limit

Link Flow
System Total 
Travel CostLink 5–6 Link 5–7 Link 6–8 Link 7–5 Link 7–8 Link 8–6

— 20   5 5   5 20 5 906

27 20   5 5   5 20 5 906

25 20   5 5   5 20 5 906

24 21   9 1 10 19 0 990
23 20 10 0 10 20 0 1,006

Note: — = no distance limit.

TABLE 2    Paths Between Each O-D Pair and Their Lengths and Costs

Path Cost

O-D Path Path Length No Distance Limit D = 27 D = 25 D = 24 D = 23

1-3 1–5–6–3 20 401 401 401 442 401
1–5–7–8–6–3 28 453a —b —b —b —b

1-4 1–5–7–8–4 23 427 427 427 444 502
1–5–6–8–4 24 427 427 427 444 —b

2-3 2–7–5–6–3 22 427 427 427 543 502
2–7–8–6–3 25 427 427 427 —b —b

2-4 2–7–8–4 20 401 401 401 362 401
2–7–5–6–8–4 26 453a 453a —b —b —b

aPath is not used because its cost is higher than that of the least-cost path;
bPath is not used because its length is out of range.
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The link flow patterns under two different cases, with and without 
the distance limit, are calculated and compared. Without a loss of 
generality, it was assumed that for each O-D pair, only one class of 
vehicles exists but that different O-D pairs may contain different 
classes of vehicles. That is, all the vehicles traveling between the 
same O-D pair have the same distance range, but vehicles travel-
ing between different O-D pairs may have different range limits. 
As a convenient numerical setting, the distance limit for vehicles 
between each O-D pair is set as β × min{lk

rs, ∀k}, ∀r,s, where lk
rs is 

the same as previously defined and β is a parameter. In this example, 
a β value of 1.2 is used for the case with the distance limit. For a 
precise comparison, numerical results in both cases are obtained 
from a running of the Frank–Wolfe algorithm until the convergence 
criterion based on the changes in flows converges to 1 E- 3.

From the result, it was found that the equilibrium flows change 
significantly (either increase or decrease) on a number of links 
(Links 1, 3, and 30, to name a few) but change little on other links 

(Links 4, 12, and 15, for example). A few example links were ran-
domly selected, and their flow variations with different distance 
limits were observed (Figure 2).

It is readily seen from Figure 2 that when β begins to increase, 
the network flows on these links change in a dramatic manner; as β 
continuously increases, the flow rates change relatively mildly and 
ultimately converge to their corresponding values with no distance 
constraints. This is because an increase in β amounts to loss of the 
distance constraint. However, these changes may not necessarily 
be monotone.

To test how much computational time was increased in the Sioux 
Falls network because of the addition of the distance constraint, 
the number of iterations (ITR), the total computational cost (TCC), 
and the computational cost per Frank–Wolfe iteration (CCPE) were 
compared for the basic TAP and DCTAP under different distance 
limits and convergence criteria. The results are reported in Table 3, 
which shows that the CCPE of DCTAP is higher than that of TAP 

TABLE 3    Computational Costs With or Without Distance Constraints

Computational Cost by Convergence Criteria

1 E − 1 1 E − 2 1 E − 3 1 E − 4

Problem 
Type β ITR

TCC 
(s)

CCPE 
(s) ITR

TCC 
(s)

CCPE 
(s) ITR

TCC 
(s)

CCPE 
(s) ITR

TCC 
(s)

CCPE 
(s)

TAP 1 0.084 0.084 5 0.437 0.087 39 3.119 0.080 225 18.214 0.081

DCTAP
1 2 0.478 0.239 2 0.430 0.215   3 0.612 0.204 3 0.627 0.209
1.2 1 0.222 0.222 3 0.497 0.166   3 0.539 0.180 3 0.503 0.168
1.4 1 0.190 0.190 4 0.658 0.165 10 1.617 0.162 16 2.486 0.155
1.6 1 0.166 0.166 3 0.358 0.119   6 0.751 0.125 8 0.851 0.106
1.8 1 0.154 0.154 3 0.337 0.112 15 1.403 0.094 97 8.393 0.087
2 1 0.147 0.147 3 0.319 0.106 24 2.243 0.093 179 14.745 0.082
3 1 0.103 0.103 4 0.395 0.099 40 3.346 0.084 222 17.821 0.080
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FIGURE 2    Changes of link flow rates against distance limits.
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and that the tighter the constraint is (i.e., the smaller that the value 
of β is), the higher is the value of CCPE. For example, when the 
convergence criterion is 1 E- 4 and β = 1, the CCPE of DCTAP is 
about 2.6 times that of TAP. However, the TCC of DCTAP under 
this condition is much lower than that of TAP, with the value for the 
latter being almost 11.5 times that for the former. This result is 
because DCTAP requires only three iterations, whereas TAP needs 
225 to converge. Although solution of the distance-constrained 
shortest-path problem costs more time than solution of the shortest-
path problem, when the constraint is tighter, a smaller number of 
paths are eligible for assignment of traffic and fewer iterations are 
thus needed to achieve the equilibrium condition. When the distance 
constraint is loose, for example, when β ≥ 3, both the TCC and 
CCPE of DCTAP are close to those of TAP.

Conclusions and Research Extensions

A new TAP with the path-based distance constraint is formulated, 
solved, and numerically analyzed. This problem represents a simpli-
fied case of traffic networks that carry electric vehicles with various 
distance limits.

This paper shows that the path cost structure associated with this 
problem at the equilibrium point is different from that of the basic 
TAP. It contains a special path-specific out-of-range cost term that 
makes this problem not as easily solved as the classic problem. The 
well-known and widely used Frank–Wolfe procedure is adopted to 
solve this problem. The feasible direction-finding step, however, 
involves a CSPP, which is essentially NP-complete, but can be 
solved relatively efficiently by a modified label-setting algorithm 
with preprocessing. The proposed algorithm is easy to understand 
and implement. The application of the algorithm for a couple of 
example problems justifies that the validity and the applicability of 
the solution procedure to general networks with resource constraints. 
The numerical results show the impact of the extra resource con-
straints on network flows and the relationship between the network 
flow evolution and the tightness of the resource constraints.

The DCTAP model provides a basic mathematical tool to study 
traffic networks with electric vehicles. This research can be extended 
along a few different directions. On the modeling side, more com-
plex network equilibrium models with vehicles of different types 
of path constraints and cost structures are of particular interest. An 
example is extension of the model to accommodate emerging hybrid 
vehicles that are not subject to the distance limit but that have dif-
ferent operational costs before and after their battery range limits 
are exceeded.

The distance constraint has an influence on urban travels and 
activities deeper and wider than that shown in this paper; in its sim-
plest case, it changes not only individual route choice behavior but 
also, at least, destination choice and mode choice behaviors. For 
promotion of a more realistic modeling tool, the authors plan to 
incorporate the mode choice and destination choice components 
into the model.

An additional benefit of this combined model is that the possibility 
that it will be infeasible because of the distance constraint is lower. 
Incorporation of these extra travel choice behaviors will further 
increase the model’s structural complexity but will allow analysis 
of more sophisticated and realistic travel demand and network flow 
patterns.

Consideration of the destination choice behavior subject to the 
availability of charging stations and the charging price at destina-

tions, for example, is one important piece of the authors’ exten-
sive research activities at present, but many other pieces need to be 
addressed in future endeavors. On the computational side, the plan 
is to conduct experiments on large-scale networks of realistic size 
to gain information about how network flow pattern shifts and how 
much the computational cost increases with the addition of the dis-
tance constraint. However, the implementation of the Frank–Wolfe 
algorithm to solve DCTAP provides only a sublinear convergence 
rate, and its poor convergence performance in the neighborhood of 
the optimal solution is notorious; to find highly precise solutions in 
large-scale implementations, a solution algorithm of the Newton or 
quasi-Newton type is anticipated.
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